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Instructions

• To receive full credit, answers must be legible, orderly, clear, and concise.

• Even if not proven, earlier numbered items may be used in solutions to later numbered
items, but not vice versa.

• Middle school teams are not required to solve the problems designated “HIGH SCHOOL
ONLY.”

• While this round is asynchronous, you are still NOT ALLOWED to use any outside
resources, including the internet, textbooks, or other people outside your teammates.

• Put the team number (NOT the team name) on the cover sheet used as the first
page of the papers submitted. Do not identify the team in any other way.

• To submit your answers, please email ONE SINGLE PDF containing all your answers
to jhmt2021proofroundB@gmail.com, with the subject tag as “Team # Proof Round
B”. For example, if your team number is 0, then the subject should be “Team 0 Proof
Round B”.
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Introduction

Rich Richard wants to store his fortune at “Fort Knoxagon,” a polygonal shaped building.
He is concerned about security, so he wants to hire some guards. As an initial plan, he
decided to assign guards to each of the vertices of Fort Knoxagon (we will assume that the
guards can see in every direction). However, this plan was not sustainable; in order to save
money, he wants to find the minimum number of guards needed so that Fort Knoxagon is
still secure. Throughout this proof round, we will help Rich Richard solve this problem by
investigating topics relating to geometry and combinatorics.

1 Polygons and Convexity

Definition 1.1. A polygon is a (closed) region in R2 (i.e. the coordinate plane) that is
bounded by finitely many line segments; it forms a (closed) curve that is not self-intersecting.
The edges of the polygon are the line segments, and the vertices of the polygon are the
intersection points between adjacent edges.

Remark 1.1. All points on the perimeter of a polygon or contained within the interior of
the polygon are inside the polygon.

Problem 1: (10 points) Identify which of the following are polygons. For each figure that
is not a polygon, explain briefly why it is not a polygon.

Only (a) and (d) are polygons . (b), (c), and (e) are not polygons; (b) is not bounded

by finitely many line segments, (c) is self-intersecting, and (e) is not closed.

Definition 1.2. A polygon P is convex if for each pair of points (p1,p2) ∈ P and any
λ ∈ [0, 1], λp1 + (1− λ)p2 ∈ P. The notation p ∈ P means that the point p is inside or on
the perimeter of P. Similarly, the notation λ ∈ [0, 1] means that λ is a real number between
0 and 1 inclusive.

Remark 1.2. The above definition is equivalent to stating that if we draw a line segment
between any two points in P, then that line segment will be contained (entirely) inside or
on the perimeter of P.

Problem 2: (5 points) Of the polygons identified in Problem 1, which are convex? If the
polygon is not convex, briefly explain why.

(a) is convex and (d) is not convex . (d) is not convex because a line segment between

its bottom two vertices lies outside of the polygon.

We did not accept answers that specified whether (b), (c), and/or (e) were convex,
because the problem asked for which of the figures were convex polygons, and the
aforementioned figures are not polygons, as stated in the solution to Problem 1.

Problem 3: (15 points) Using Definition 1.2, prove that the square with vertices

(1,−1), (1, 1), (−1, 1), and (−1,−1)

is convex.
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Let us name the square specified in the problem S. First, notice that in general, a point
(x0, y0) ∈ S if −1 ≤ x0 ≤ 1, and −1 ≤ y0 ≤ 1.

Now, consider arbitrary points p1 = (x1, y1) and p2 = (x2, y2) such that p1,p2 ∈ S.
For some λ ∈ [0, 1], let

p3 = λp1 + (1− λ)p2 = (λx1 + (1− λ)x2, λy1 + (1− λ)y2) = (x3, y3)

Now, since x3 = λx1 + (1 − λ)x2, let us consider the possible range of values x3 can
take. Since λ and 1− λ are both non-negative numbers, x3 is maximized when x1 and
x2 are both as large as possible, i.e. x1 = x2 = 1. In this case, x3 = λ + (1 − λ = 1,
i.e. the largest possible value of x3 is 1. Next, x3 is minimized when x1 and x2 are
both as small as possible, i.e. x1 = x2 = −1. In this case, x3 = −λ − (1 − λ) = −1,
i.e. the smallest possible value of x3 is −1. Thus, we find that −1 ≤ x3 ≤ 1. This
exact argument can also be applied to y3 to show that −1 ≤ y3 ≤ 1, thus by our initial
observation on points ∈ S, (x3, y3) = p3 ∈ S. Since the entire argument above used
arbitrary values for p1, p2, and λ, we can conclude that S is convex.

Another possible solution uses the fact that for any real numbers a, b, |a+ b| ≤ |a|+ |b|,
and |ab| = |a||b|. These two facts can be used to show:

|x3| = |λx1 + (1− λ)x2| ≤ |λx1|+ |(1− λ)x2| = λ|x1|+ (1− λ)|x2| ≤ λ+ (1− λ) = 1.

In other words, |x3| ≤ 1, and since the same argument can be applied to y3 to show
|y3| ≤ 1, we have successfully shown that p3 ∈ S.

Problem 4: (5 points) Show that if a polygon has an angle with measure greater than
180◦, then it is not convex.

Suppose that in polygon P, ∠ABC is an angle of measure greater than 180◦. Thus,
we claim that the line segment formed by connecting vertex A and vertex C is outside
of P. If this claim is true, then it immediately follows that P is not convex by the
definition of convexity.

We will prove this claim by contradiction, thus for sake of contradiction, assume that
AC ∈ P. Since A, B, and C are consecutive vertices, 4ABC must be a triangle
completely contained inside P, since AB and BC are sides of P (i.e. AC,BC,AC ∈ P
was assumed). Thus, as with any triangle, the angle measures of 4ABC must sum to
180◦. However, since ∠ABC > 180◦, the sum of the angles of 4ABC must sum to
more than 180◦, which is absurd. Therefore, it cannot be the case that AC ∈ P, and
thus we have proven our claim.
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2 Triangulations

Definition 2.1. A diagonal of a polygon P is a line segment ` that satisfies the following
properties:

• ` is contained in the interior of P.

• ` is not an edge of P.

• the endpoints of ` are two vertices of P.

Definition 2.2. Two diagonals of a polygon are noncrossing if they do not intersect at an
interior point of the polygon.

Remark 2.1. If two distinct diagonals share an endpoint, they are noncrossing.

Theorem 2.1. Any polygon P with more than 3 vertices has a diagonal.

Proof. Toss P in the coordinate plane. Pick the vertex V with the smallest y-coordinate (if
there is more than one, pick the vertex with the largest x-coordinate), and consider vertices
A and B such that V A and V B are edges of P. Draw AB. Either it is a diagonal of P
and we are done, or it is not. If AB is not a diagonal, because P has more than 3 vertices,
4ABV must contain some vertex of P. Now, draw a line ` parallel to AB passing through
V, and slide it up parallel to itself until it hits a vertex of P. Let X be this vertex. Then,
the region of P below ` and above V contains no vertices of P, so V X is a diagonal of P
by definition.

Definition 2.3. Let P be a polygon. A triangulation of P is a dissection of P into triangles
by a maximal set of noncrossing diagonals. We define “maximal” to mean that no more
diagonals of P can be drawn without crossing another diagonal in the set.

Problem 5: (5 points) Draw a triangulation of the following polygon:

Any solution that draws non-intersecting diagonals of the polygon to split it into 7
triangles is a valid solution. Here is one example below:

Problem 6: (10 points) Prove that every polygon has a triangulation. Hint: use induction.
HIGH SCHOOL ONLY.

We will induct over the number of vertices n in the polygon P. Thus, the base case will
be for n = 3. Since triangles do not have diagonals, an unchanged triangle is a valid
triangulation since it is already composed of exactly 1 triangle. Next, using the strong
inductive hypothesis, assume that all polygons with n ≤ k vertices have a triangulation.

Now, consider a polygon P with n = k+1 vertices. By Theorem 2.1 above, P must have
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a diagonal. Thus, we draw that diagonal of P and split P into two distinct but adjacent
polygons Q and R. Notice that Q must have at least 1 vertex that is not shared with
R, because otherwise Q would not be distinct from R. Similarly, R must have at least 1
vertex that is not shared with Q. Thus, both Q and R have less than k+1 vertices, and
by the strong inductive hypothesis, Q and R must have triangulations. Since Q and R
are adjacent but non-intersecting, their combined triangulations form a triangulation
for P, and we have finished our proof by induction.

Lastly, note that it is NOT sufficient to say that drawing an arbitrary diagonal of P will
necessarily split P into a triangle and another polygon, because if P is not convex, some
diagonals are not possible to draw as they will not be inside the P. Thus, valid solutions
must either prove that there exists at least one diagonal splits P into a triangle, or do
what the solution above does and not assume that a diagonal splits P into any specific
polygon.

Problem 7: (10 points) For each n > 3, construct a polygon with n vertices that has a
unique triangulation; justify why the construction works.

The figures below show examples of such polygons for n = 4, n = 5, and n = 6. The
same strategy shown in these examples can be extended for any n. In particular, to
construct an n-gon with a unique triangulation, one can draw the upper half of a regular
(2n − 4)-gon, choose a point far enough above the half, and then draw line segments
connecting the lowest 2 vertices of the half to that point.

Note that this strategy for polygon construction results in unique triangulations be-
cause in all the polygons, the only valid diagonals are line segments that connect the
vertex at the top of the polygon to the vertices not adjacent to the top vertex (i.e. the
vertices below the top vertex, except for the two vertices adjacent to the top vertex);
there are n− 3 such line segments. No other diagonals are possible because any other
method of connecting non-adjacent vertices results in line segments that are outside the
polygon. To see this in more rigor, given such an n-gon, there are

(
n
2

)
line segments that

can be drawn between 2 of its vertices. But 2 of these line segments are the outer edges
of the polygon. Moreover,

(
n−1
2

)
of these line segments connect vertices of the upper

half of a regular (2n − 4)-gon, which are either edges of the polygon or line segments
outside of the polygon. Thus,(

n

2

)
−
(
n− 1

2

)
− 2 =

n(n− 1)− (n− 1)(n− 2)

2
− 2 = n− 3

of the line segments are actually diagonals of the polygon, as we claimed earlier. By the
nature of our construction, these diagonals are noncrossing, and we must draw all of
them to obtain a valid triangulation; therefore, the polygon has a unique triangulation.
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3 But What About Fort Knoxagon?

Definition 3.1. Consider a point p inside Fort Knoxagon. A guard can see p if the line
segment connecting the point at which the guard is standing and p lies entirely inside the
polygon defined by the fort.

Definition 3.2. A guard’s field of view is the set of all points that they can see.

Remark 3.1. A guard’s field of view is restricted by the edges of the polygon.

Definition 3.3. Suppose that there are n guards defending Fort Knoxagon. Let these
guards have field of views V1, . . . ,Vn, and let F denote the polygon defined by Fort Knoxagon.
We say that Fort Knoxagon is protected if

n⋃
i=1

Vi = F .

That is, Fort Knoxagon is protected if the collective fields of view of the guards is F .

Problem 8: (10 points) For the polygons below, find the minimum number of guards
needed to protect each one; provide an explanation for (c).

(a) 1

(b) 1

(c) 1 or 2 depending on explanation

(d) 2

(e) 2

Problem 9: (10 points) Prove that every convex polygon can be protected by 1 guard.

Let P be a convex polygon, and suppose we situate our 1 guard at point p such that
p ∈ P. Now, for the sake of contradiction, assume that P is not protected by this
one guard. This implies that there exists at least 1 point q such that the guard at p
cannot see q, i.e. pq 6∈ P. However, since, p,q ∈ P, this means that by the definition
of polygon convexity, P is not a convex polygon. As a result of this contradiction, our
initial assumption must be false, which means that P can be protected by 1 guard.

And finally, the following problem will use all of the concepts that we have learned so far!

Problem 10: (20 points) Let F have n vertices. As a function of n, find and prove
an upper bound on the number of guards needed to protect F (this bound should be as
strong as possible and sufficient for any F).
HIGH SCHOOL ONLY.
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The desired bound is
⌊
n
3

⌋
. To prove that this is sufficient for any F , consider a trian-

gulation of F . It is possible to color each of the vertices of F with 1 of 3 colors such
that each “triangle” in the triangulation has distinctly-colored vertices (i.e. there ex-
ists a 3-coloring of the triangulation); this can be shown with either induction or graph
theory. By the Pigeonhole Principle, the least common color in the coloring appears⌊
n
3

⌋
times; situate a guard there at each vertex that is assigned that color. Then,

since each triangle of the triangulation is protected by a guard (due to the convexity
of triangles), the collective fields of view of the guards is F , so F as a whole is protected.

To show that this bound is as strong as possible, we will demonstrate that
⌊
n
3

⌋
guards

are needed to protect some polygons. Consider, for instance, the hexagon depicted in
Problem 8c with 2 “spikes.” If the line segment connecting the spikes is sufficiently
long, then 2 guards are needed to protect the polygon (we situate the guards along the
bottom to protect each spike). We may construct similar polygons with n spikes; each
polygon will have 3n edges (2 edges for each spike, n−1 edges to connect the spikes, and
1 edge at the bottom). Thus,

⌊
n
3

⌋
guards are needed to protect some n-gons, as claimed.

Hopefully, this will save Rich Richard enough money!

Author’s Note: The main problem I introduced during this round is a depiction of
the Art Gallery Problem. I hope that you enjoyed deriving Professor Steve Fisk’s bril-
liant solution to this problem!

If you want to dive deeper into the concepts covered during this round, I encourage you
to check out Discrete and Computational Geometry by Devadoss and O’Rourke, which
I used as a reference while writing this round; it’s a very neat book!

Lastly, I want to thank RK for writing many of the solutions above, as well as Ex
Numera for proofreading the round.
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